Infrastructure / Dam Monitoring—Structural

What We Do

Working on a system

Measurement automation platforms are unique to each dam because of the many types of measurements they are required to collect. Our platforms can measure all the parameters required for a successful dam monitoring program, including, but not limited to, water level and flow, strain, and vibration. In addition to real-time data measurement, each measurement device will alert you of changes in factors such as water level, load, pressure, and tilt if they move beyond acceptable ranges. Historical and real-time data can be transmitted directly to the cloud or to your PC. Measurement automation platforms are rugged, low power, and adaptable to the harshest, most remote environments.

Allow our team of experienced application engineers to make this easy as they help you build a dam monitoring system specific to the measurements you need.

Learn about our patented VSPECT® spectral-analysis technology at our VSPECT® Essentials web resource.

The dynamic vibrating-wire measurement technique is protected under U.S. Patent No. 8,671,758, and the vibrating-wire spectral-analysis technology (VSPECT®) is protected under U.S. Patent No. 7,779,690.

Learn more

Check out some awesome examples of what our equipment can do in this area

Systems

Personalice sus sistema

La mayoría de los sistemas que vendemos han sido personalizados. Cuéntenos sus necesidades y le ayudaremos a personalizar el suyo.

Instrumentación

We offer a variety of products that can be used to create systems for Dam Monitoring—Structural. Many of the major components used to create these systems are listed below. Please let us know if we can help you configure a system.

Mas detalles acerca de nuestro Dam Monitoring—Structural Sistemas

Geotechnical Measurement Automation Platforms

The versatility of our platforms allows them to be customized for each application. We offer a range of platforms, from the most basic device with just a few channels to expandable platforms that measure hundreds of channels. Scan rates can be programmed from once every few hours to 10,000 times per second, depending on the model. Measurement types, processing algorithms, and recording intervals are also programmable.

The measurement automation platform has a simple, yet powerful on-board instruction set: simply choose the sensor type, scan rate, and measurement channel. On-board mathematical and statistical processing allows data reduction in the field and enables measurements to be viewed in the desired units, whether that is microstrains, centimeters per second, revolutions per minute, meters, Amperes, or inches.

The versatility of the measurement automation platform extends to control as well. Each platform can monitor and control external devices based on time or measured conditions, allowing savings in time and equipment, and warning of—or possible prevention of—dangerous conditions. These platforms are rugged enough to be used in geotechnical studies and dams worldwide.

The measurement automation platform can stand alone. Once programmed and powered, no human or computer interaction is required, although data are typically downloaded to a PC or exported to the cloud for further analysis. A telecommunication or hardwire link allows data to be monitored and graphed in your office rather than in the field. Data from various stations and applications can be monitored from a single laptop or desktop computer.

The low power drain typically allows our platforms to be powered by solar panels and batteries. If 110/220-Vac power, vehicle power, or external 12-Vdc batteries are available, you can use those as well. Nonvolatile data storage and a battery-backed clock ensure data capture and integrity.

Sensors Used for Geotechnical Measurements

The versatility of our measurement automation platforms begins with sensor compatibility. Our platforms can measure virtually every commercially available sensor, allowing them to be used in different ways for a variety of measurements. For example, the following are common parameters that the sensors in our platforms measure:

  • Barometric pressure
  • Pore water pressure
  • Water level
  • Water flow
  • Temperature
  • Weight
  • Force
  • Pressure
  • Strain
  • Tilt
  • Deflection
  • Inclination
  • Settlement
  • Displacement
  • Elevation
  • Humidity

More specifically, these are the sensor types commonly used in our measurement automation platforms:

  • Foil-bonded strain gauges
  • Vibrating-wire strain gauges
  • Strainmeters
  • Extensometers
  • Jointmeters
  • Crackmeters
  • Deformation meters
  • Piezometers
  • Pressure transducers
  • Barometers
  • Settlement sensors
  • Borehole pressure cells
  • Earth pressure cells
  • Load cells
  • Pressure cells
  • Inclinometers
  • Tiltmeters
  • Tilt beams
  • Stressmeters
  • Thermistors
  • Thermocouples
  • Deformation sensors
  • Accelerometers
  • Sonic water-level sensors
  • Displacement transducers
  • Linear variable differential transformers (LVDT)

Because our measurement automation platforms have many channel types and programmable inputs, all these sensor types can be measured by one device. Channel types include analog (single-ended and differential), pulse counter, switched excitation, continuous analog output, digital I/O, and anti-aliasing filter. Using switched or continuous excitation channels, our platforms provide excitation for ratiometric bridge measurements.

The following are common sensor measurement types that our measurement automation platforms are compatible with:

  • Frequency
  • Resistance
  • Voltage
  • Ratiometric
  • Current
  • Modbus RTU
  • RS-485
  • SDI-12

Communications

The availability of multiple communications options for retrieving, storing, and displaying data also allows platforms to be customized to meet your exact needs. Onsite communications options include direct connection to a PC or laptop, PC cards, storage modules, and platform keyboard/display. Telecommunications options include short-haul, telephone (including voice-synthesized and cellular), radio frequency, multidrop, and satellite.

Casos de estudio

Wyoming: Vibrating-Wire Technology for Dam Monitoring
Located beneath a steep canyon near Douglas, Wyoming sits LaPrele Dam, privately owned by LaPrele......read more
New Zealand: Lahar Observations
All of our years of effort have paid off. Wehave collected a world-class data set......read more
Kentucky: Dam Repair
The Wolf Creek Dam near Jamestown, Kentucky, was constructed partially as a regular concrete hydroelectric......read more
Ohio: Monitoring Sinking Highway
When the Ohio Department of Transportation (Ohio DOT) was preparing to widen Interstate 77, they......read more
Norway: Construction and Aquaculture Projects
The Norwegian company ITAS (Scanmatic Instrument Technology AS), started as part of the Research Council......read more
England: Underground Excavation for Rail System
More than 50 CR10-based monitoring systems were used for structural monitoring during the construction of......read more
Idaho: Slope Stability Monitoring
The Problem--> Our customer required a data acquisition and control system to monitor a slowly moving......read more
Nova Scotia: Monitoring Bridge Performance for Future Projects
The Confederation Bridge is one of the world's longest continuous pre-stressed-concrete, box-girder, bridges built over......read more

Integradores relacionados

The following is a list of companies that have developed expertise in our products and provide consulting, installation, and other services for dam monitoring—structural applications.