RETIRED ›
This product is no longer available. Some accessories, replacement parts, or services may still be available.
05103-45-L Wind Monitor, Alpine Version
Services Available
Repair Yes
Calibration No
Free Support Yes

Overview

The 05103-45 Wind Monitor is a lightweight instrument that measures wind speed and wind direction. It is designed to prevent ice buildup, allowing the sensor to provide accurate measurements in harsh alpine conditions. Manufactured by R. M. Young, this wind monitor is cabled for use with Campbell Scientific dataloggers.

Read More

Benefits and Features

  • Smaller propeller diameter minimizes vibration at high wind speeds
  • Discourages ice-buildup with a black sensor housing that is covered with an ice-resistant coating
  • Compatible with most Campbell Scientific data loggers
  • Uses stainless-steel, precision-grade ball bearings for the propeller shaft and vertical shaft bearings
  • Rugged enough for harsh environments
  • Compatible with the LLAC4 4-channel Low-Level AC-Conversion Module, which increases the number of anemometers one data logger can measure
  • Compatible with the CWS900-series interfaces, allowing it to be used in a wireless sensor network

Images

Detailed Description

The 05103-45 is constructed from rigid UV-stabilized thermoplastic, and has stainless steel and anodized aluminum fittings. The thermoplastic material resists corrosion from sea air environments and atmospheric pollutants. It uses stainless-steel precision-grade ball bearings for the propeller shaft and vertical shaft bearings.

Designed for harsh alpine conditions, the 05103-45 has a smaller propeller diameter than the other wind monitor models, which minimizes vibration at high wind speeds. To discourage ice buildup, the sensor's housing is black and covered with an ice-resistant coating.

The 05103-45 measures wind speed with a helicoid-shaped, four-blade propeller. Rotation of the propeller produces an ac sine wave that has a frequency directly proportional to wind speed. The ac signal is induced in a transducer coil by a six-pole magnet mounted on the propeller shaft. The coil resides on the non-rotating central portion of the main mounting assembly, eliminating the need for slip rings and brushes.

Wind direction is sensed by the orientation of the fuselage-shaped sensor body, which is connected to an internal potentiometer. The datalogger applies a known precision excitation voltage to the potentiometer element. The output is an analog voltage signal directly proportional to the azimuth angle.

Specifications

Operating Temperature Range -50° to +50°C (assuming non-riming conditions)
Mounting Pipe Description
  • 34 mm (1.34 in.) OD
  • Standard 1.0-in. IPS schedule 40
Propeller Diameter 14 cm (5.5 in.)
Overall Height 37 cm (14.6 in.)
Main Housing Diameter 5 cm (2.0 in.)
Overall Length 55 cm (21.7 in.)
Weight 1 kg (2.2 lb)

Wind Speed

Range 0 to 100 m/s (0 to 224 mph)
Accuracy ±0.3 m/s (0.6 mph) or 1% of reading
Starting Threshold 1.0 m/s (2.2 mph)
Distance Constant 2.7 m (8.9 ft) 63% recovery
Output ac voltage (three pulses per revolution)

90 Hz (1800 rpm) = 8.8 m/s (19.7 mph)
Resolution (0.0980 m s-1)/(scan rate in seconds) or (0.2192 mph)/(scan rate seconds)

Wind Direction

Mechanical Range 0 to 360°
Electrical Range 355° (5° open)
Accuracy ±3°
Starting Threshold 1.1 m/s (2.4 mph) at 10° displacement
Distance Constant 1.3 m (4.3 ft) 50% recovery
Damping Ratio 0.3
Damped Natural Wavelength 7.4 m (24.3 ft)
Undamped Natural Wavelength 7.2 m (23.6 ft)
Output
  • Analog dc voltage from potentiometer (resistance 10 kohm)
  • Linearity is 0.25%.
  • Life expectancy is 50 million revolutions.
Voltage Power switched excitation voltage supplied by data logger

Compatibility

Please note: The following shows notable compatibility information. It is not a comprehensive list of all compatible products.

Dataloggers

Product Compatible Note
21X (retired)
CR10 (retired)
CR10 (retired)
CR1000 (retired)
CR1000X
CR10X (retired)
CR200X (retired)
CR206X (retired)
CR211X (retired)
CR216X (retired)
CR23X (retired)
CR295X (retired)
CR300
CR3000 (retired)
CR310
CR500 (retired) Measurements are typically processed for output with the Wind Vector instruction, which is not present in the CR500.
CR5000 (retired)
CR510 (retired)
CR800 (retired)
CR850 (retired)
CR9000 (retired) Measurements are typically processed for output with the Wind Vector instruction, which is not present in the CR9000.
CR9000X (retired)

Additional Compatibility Information

Mounting

The 05103-45 can be attached to a crossarm via a 17953 NU-RAIL fitting or CM220 Right Angle Mounting Bracket. Alternatively, it can be attached to the top of a CM106B or stainless-steel tripod via the CM216 Sensor Mounting Kit.

Wind Profile Studies

Wind profile studies measure many wind sensors. For these applications, the LLAC4 4-Channel Low Level AC Conversion Module can be used to increase the number of Wind Monitors measured by one data logger. The LLAC4 allows data logger control ports to read the wind speed sensor’s ac signals instead of using pulse channels. Data loggers compatible with the LLAC4 are the CR200(X) series (ac signal ≤1 kHz only), CR800, CR850, CR1000, CR3000, and CR5000.

Data Logger Considerations

The 05103-45's propeller uses one pulse count channel on the data logger. Its wind vane requires one single-ended channel and access to an excitation channel (the excitation channel can be shared with other high impedance sensors).

Programming

The 05103-45's propeller is measured by the PulseCount Instruction in CRBasic and by Instruction 3 (Pulse Count) in Edlog. The wind vane is measured by the BrHalf Instruction in CRBasic and by Instruction 4 (Excite-Delay-SE) in Edlog. The measurements are typically processed for output with the Wind Vector instruction (not present in the CR500 or CR9000 but is present in the CR9000X).


Frequently Asked Questions

Number of FAQs related to 05103-45-L: 3

Expand AllCollapse All

  1. The measurement instructions will likely remain the same. However, in addition to the multiplier and offset, the type of pulse may change for the wind speed, and the excitation voltage may change for the wind direction. For an explanation of how the data logger needs to be programmed, see the instruction manual.

  2. Orientation of the wind monitor is done after the data logger has been programmed, and the location of True North has been determined. True North is usually found by reading a magnetic compass and applying the correction for magnetic declination, where magnetic declination is the number of degrees between True North and Magnetic North. Magnetic declination for a specific site can be obtained from a USFA map, local airport, or through a computer service.

  3. The short answer is less than 0.01 mA. The wind speed signal requires no power. The wind direction portion of the sensor only uses a maximum of 0.5 mA when excited with 5 Vdc, and then it is only on for 0.016 s for every measurement. When the wind direction is measured every second (typical), the average current drain is less than 0.01 mA.